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A modification of the Bohr-Sommerfeld quantization 
condition 

M S Marinov and V S Popov 
Institute for Theoretical and Experimental Physics, Moscow 117259, USSR 

Received 26 February 1975 

Abstract The Bohr-Sommerfeld quasiclassical quantization condition for a central poten- 
tial is modified in such a way that the constant y becomes dependent on the angular 
momentum 1 and on the potential behaviour at small distances. This form of the quantiza- 
tion condition is especially simple in the case I = 0. When applied to some particular 
potentials, taken as examples, the present approximation provides more accurate values of 
the level energies than the conventional form of the quantization condition. Application of 
the quasiclassical approach to singular potentials with ‘collapse’ and to the superstrong 
Coulomb field induced by a charge Z > 137 is also considered. 

1. Introduction 

The well known quantization condition for a one-dimensional potential problem is 

Jx: [2m(E- V(x))]”’ dx = (n + y)nh 

where x1 and x2  are the classical turning points and y = 5.  In the case of a three- 
dimensional central potential the origin, r = 0, is a singularity. The conventional 
approach (Kramers 1926, Langer 1937; see also Landau and Lifshitz 1963, Berry and 
Mount 1972) is to substitute 1 ( I +  1) by (I++)’ in the centrifugal part of the kinetic energy, 
conserving the value of y = i. This ‘Langer’s correction’ is widely used in applications 
of the quasiclassical approach to calculation of energy levels as well as to scattering 
problems (Berry and Mount 1972, see also recent papers by Delos and Carlson 1975, 
Sukumar and Bardsley 1975). In a previous work (Marinov and Popov 1974) we 
proposed to omit the centrifugal energy in the effective momentum p(r), changing the 
constant y correspondingly. For an important class of potentials-those with a power 
singularity at r + 0, V ( r )  - r - a  (0 < a < 2), and decreasing as an exponential at infinity 
-the proposed quantization condition at 1 = 0 has a form analogous to the one- 
dimensional case, 

1 [2m(E - V(r))]’I2 dr = (n, + y)’rrh, 

Here V(r,)  = E ,  n, = 0, 1,2, .  . . is the radial quantum 
omitted in the following). 

number (the subscript r will be 
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Using dimensionless variables I ,  g ,  x (with atomic units m = h = 1) and the function 
Q ( Z h  

I2 g2u(x) E =  -- V ( r )  = -- 
2mR2’ 2mR2 ’ 

x = r/R, v ( x )  2 0, 

Q ( z )  = Io (u(x)  - z 2 ) 1 1 2  dx! 

equation (1.1) may be reduced to the form 

gQ(I /g)  = (n +Y)X (1.3) 
which is much simpler than the conventional condition. The notations used are as 
follows : R is the range of the potential V, g is the strength (coupling) constant, u(x) is 
the potential form function, and xo = xo(z) is the root of the equation u(x) = z 2 .  

The function Q ( z )  may be calculated analytically for some interesting potentials. 
For instance, in the case u ( x )  = exp( - x), a = 0, Q ( z )  = 2[( 1 - z ’ ) ’ ’ ~  - z cos- ‘z] at 
0 < z < 1. The approximate equation (1.3) for the energy takes the form 

( g 2 - i 2 ) ’ / 2 - i c O s - l , 4 / g  = (n+3n/2.  (1.4) 
Note that the Schrodinger equation for this potential may be solved explicitly at I = 0, 
and the exact equation is 

J2&) = 0. (1.5) 
The equation (1.4) is obtained from (1.5) using the Debye asymptotics of the Bessel 
function (see Jahnke et al 1960): 

J,(v/cos p) = (2/vn tan p)’” cos[v(tan p-p)-n/4]. 

This formula is known to be rather accurate. 
For some potentials used in atomic and nuclear physics the quantization condition 

(1.1) allows one to calculate easily the level energies with reasonable accuracy ; the error 
is no more than a few per cent, even for the ground state. However, this fact was shown 
in our previous work only for the s states ( 1  = 0). The purpose of the present work is to 
generalize the approach to the case of arbitrary values of I ,  as well as to apply the method 
to singular potentials with a ‘collapse’. 

2. Deduction of the quantization condition 

Consider the Schrodinger equation for the radial wavefunction ~ ( x ) ,  x = r / R  : 

X’‘ + [gZu(x) - I ( I +  1)x- - i 2 ] X  = 0. (2.1) 
Assume that u ( x )  - x-“ when x -+ 0. The centrifugal energy is dominating at 

x << x1 = [ [ ( I +  l)/g2]’”2-“’whilethepotentialtermg2u(x)dominatesat x 1  << x << (g /%)z lz .  
In the region of small x we put u(x)  = x-‘, omit the term and solve the equation 
exactly : 

x = Cx”2J,(k2), 

k = p = 1-42 .  (2 .2 )  

v = (21+ 1)/(2-a), 
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The nth energy level occurs at sufficiently large g, ie g > g,, - nna, a = 50" U''' dx, 
so that at high n there exists a region of small x where the asymptotics of the Bessel 
function may be used, k 2  >> 1 .  Thus 

X(r) 2: Crai4 sin &r), 

e(r)  = --2+(+-v)n/2. 2g 
2 - U  

Compare this form of the wavefunction with the quasiclassical solution. The quasi- 
classical variable phase at x << 1 is 

[g2x-"- / ( I +  l ) x -2]1 '2  dx = {2gxO - n[l(l+ 1)]"*}(2 - U ) - ' .  

As the discrete spectrum is determined by the condition O(x2)+n/4 = (n+l)n  where 
x2 is the larger turning point, we finally get the quantization condition 

p(r )  = [2(E-  V(r))-A2r-2]1'2,  A = [ / ( I +  1 ) ] 1 ' 2 ,  
1 / + + - A  
2 2-01 

y = -+--. 

The centrifugal energy enters the momentum p(r) in its original form (without the 
Langer substitution), while the constant y depends now on the orbital angular momentum 
I as well as on the singularity of the potential. The condition (2.4) is a generalization of 
equation (1 .1 )  applicable for any 1. On the other hand, at 1 >> 1 

y = -$+[8(2-~c)l]- '+O(I-~)  

and we obtain the usual quasiclassical condition. 
Note that at n >> 1 the condition (2.4) may be essentially simplified. In this case 

l(l+ 1)x-' << g2u(x)  in the whole integration region excluding the vicinity of xl. With 
this in mind we omit the centrifugal energy, changing y correspondingly. This procedure 
results in the following quantization condition : 

where the function Q(z) is defined in (1.2). For I = 0 the conditions (2.4) and (2.5) are 
identical. Generalization to the multidimensional case is given in the appendix. 

3. Bound states with zero energy 

The case E = 0 (appearance of a bound state) is rather interesting. For instance, this 
problem arises in calculation of the critical nuclear charge, when the electron discrete 
level drops to the boundary of the lower continuum in the relativistic Coulomb problem 
(see 6 5) .  Let g,, be the value of the coupling constant g at which the bound state with 
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quantum numbers n, 1 appears. Defining the function 

G(z) = r2 [ Z ~ U ( X ) - X ~ ~ ] ~ ~ ~  dx, 

we get from the condition (2 .4)  an equation to determine g,, : 

G(g/N = z(n+y)/A A = [I(/+ 1 ) ] 1 ’ 2 .  

(3 .1)  

(Here 1 > 0; if I = 0, equation (3 .6)  is valid.) The function G(z) is real at zo  < z < cc 
where 

zo = (u(xo))-  1’2x0 (3.3)  
and xo is the root of the equation xu’(x)/u(x) = - 2 .  When z + zo the expansion 
G(z) = al(z-zo)+a,(z-zo)2 + . . . may be used with coefficients that are expressed in 
terms of the function u(x )  and its derivatives at x = x o ,  eg a ,  = z [ z ; ( 3  - x 2 u ” / 2 u ) ] ; ~ ~ ~ .  

If n << 1 the root of equation (3 .2)  is near zo and g,, depends on I approximately 
linearly : 

where c1 = zo, co/cI = ( n + y ) ( 3 - ~ ~ ~ ” / 2 u ) ~ ’ _ ~ , .  Thus for the potential 

g,, = ~ l A + ~ o + ~ ~ l A - ’ +  . . .  (3.4) 

u(x) = e-%-‘, O < a < 2  (3.5) 
we get x o  = 2-a, zo = (e/xo)x0I2, co/cl = ( n + y ) ( x o / 2 ) ’ / * .  

G(z) = az+b+O(I), 
Another limit is n >> 1 and G ( z )  is involved at z >> 1. It may be seen that 

r m  

a = J ( U ( X ) ) ” ~  dx, b = b ,  + b 2 ,  

Here b,  is determined by the region near x 1  and b2 is from the vicinity of x 2  ; b2 = 0 if 
the potential decreases exponentially at large r .  The result is 

b,  = - n / ( 2 - a ) .  
0 

bA 2 1 + 3 - a  
TI 2 ( 2 - a )  ’ 

g,, = (n  + y‘)7c/a, y’ = y - - = 

In this case we also get a linear dependence on I ;  however, the coefficient is different 
from that in (3.4). The result (3.6) may be deduced from (2.5) by putting ,I = 0 and 
Q(0) = a. Note that for the potential ( 3 3 ,  a = 2 T ( P ) ,  

The conventional quantization condition with the Langer substitution also results in 
equation (3.2) for g,,, where in this case one has to put A = I + * ,  y = f. At 1 >> 1 ,  the 
difference between the two approaches is negligible : 

= 1 - 4 2 .  

Ag = g,,-g:;) = - ( ___- 7c z o )  + O ( P ) .  81 a l ( 2 - a )  

(for instance, for the Yukawa potential Ag = -0.0604 I - ’ ) .  

4. Comparison with exact solutions 

It is easy to see that for the Coulomb potential, as well as for the oscillator potential, 
both the quantization conditions (2 .4)  and (2 .5)  produce the exact energy spectrum at 
any n and 1. Another example of coincidence with the exact solution is the Hulthen 
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potential at I = 0. The case is ~ ( x )  = (ex-l)- ' ,  Q ( z )  = n [ ( l + ~ ~ ) " ~ - z ] ,  y = y' = 1 
and the energy of the ( n  + 1)s level is 

i = [gz - ( n +  1)2]/2(n+ 1) (4.1) 

just as in the exact solution (see eg Flugge 1971). 
To test the accuracy of the quasiclassical approach, a wide class of potentials has 

been considered. The exact spectrum was calculated numerically by means of the 
variable phase method (Calogero 1967, Marinov and Popov 1973). We present here 
some of the results. 

We start with the problem of appearance of the ground state (ie n = 1, I I  = 0) 
which seems to be the least appropriate for the quasiclassical approach. For the 
potentials (3.5) the quantity 6 = (goo -goo)/go0 was calculated, where goo is the exact 
value of the coupling constant, at which the 1s level appears, and goo is obtained using 
the formula (3.6). It is represented in figure 1. If the potential is not too close to the 

-O *I 
-0.41 

Figure 1. Relative errors in the quasiclassical calculation for the potential equation (3.5). 

singular case (a 5 1.6) the error of formula (3.6) is no more than a few per cent. Analogous 
results are obtained for the finite-range potential 

U(..) = x -ae(l - x). (4.2) 
In this case the exact solution of the Schrodinger equation at x < 1 (or r < R )  has the 
form (2.2), while at x > 1 ,  ,y = c,x'+'+c,x-'. The level appears when the boundary 
condition (xx'lx),, = - 1 is fulfilled, so 

1 
g,, = a = ( 1  -a/2)-', v = ( / + + ) U -  1 (4.3) 

where t,,, is the nth positive root of the Bessel function J,. Using the known asymptotics 
oft,,, (see, eg, Jahnke et a1 1960) we get 

(4.4) 
where g,, is obtained from (3.6) at? y' = (2v+3)/4. Thus one can see that the accuracy 
of the quasiclassical condition (2.5) is characterized by the parameter ( / / ~ n ) ~ .  

t Note that this value of y' is less by than that given in (2.5). This is due to the presence of a sharp edge 
of the potential well (4.3) at x = 1 .  

g,Jg,' = 1 -3nn) - 2  (v  2 -a,+ . . . 
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Consider now the screened Coulomb (Yukawa) potential, u(x) = e-’x-’, which is 
the most interesting among the potentials (3.5). Results are presented in tables 1 and 2. 
For the levels ( n +  1)s from (3.6) one gets gnO = ( n +  1)(7r/2)’’’. With increase of n the 
error falls, while it is of the order at n = 1. For the levels with n = 0 and various I ,  
two variants of the quasiclassical approximation are presented: ours as well as that 
obtained from the equation (3.2) with A = I + + ,  y = f, corresponding to the Langer 
approach. The first one is more accurate, and both converge quickly with the exact 
values when I increases. 

Table 1. Coupling constants for the Yukawa potential at which the levels (n+ 1)s appear; 
En, are exact values and g,, are obtained from the quasiclassical equation (3.6). 

n %“O g”0 

0 1.296 1.253 
1 2,539 2.507 
2 3.787 3.760 
3 5,037 5.013 
4 6.288 6,267 
5 7,540 7,520 
6 8.791 8.773 
7 10044 10027 
8 11,297 11.280 

Table 2. Coupling constants at which the levels with n = 0 and various I appear; go, are 
exact quantities, go, are calculated by means of (3.2), and gb‘j’ result from the conventional 
formula with the Langer correction. 

0 1,296 1.253 1.420 
1 3,013 3.02 1 3461 
2 4,678 4.684 4.708 
3 6.335 6.339 6.355 
4 7.988 7.991 8.004 
5 9.639 9.641 9.652 
6 11.29 11.29 11.30 
7 12.94 12.94 12.95 
8 14.59 14.59 14.60 

The calculations show that when the bound energy increases, the accuracy of the 
formula (2.4) is also increasing. This was shown for the s levels in some potentials: 
u ( x )  = e-x ,  e-xx-’, cosh-’x. Thus in many cases the quantization condition (2.4), 
that is asymptotically correct at n -+ CO, predicts the level energies with reasonable 
accuracy even at low n and 1. 

However, the error of the method is increased when the potential approaches the 
singular case, a-+ 2 (see figure 1). So the question of whether the quasiclassical approach 
may be applied to singular potentials ( V ( r )  - r - ’  at r -+ 0) is to be considered separately. 
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5. Quasiclassical approach to singular potentials 

Consider the potential V(r )  = - P / 2 r 2 .  (An effective potential with such a behaviour 
at r -, 0 arises in the relativistic Coulomb problem for scalar and spinor charged 
particles (Popov 1970, 1971)) At fl  > the effective orbital angular momentum 
i = -+ +[(1+$)2-j]112 becomes complex for the s state. A formal substitution of such 
1 in formulae (2.4) and (2.5) results in complex energies and the method is invalid. 
As is well known (see, eg, Landau and Lifshitz 1963), at P > 4 the 'collapse' occurs. 
In fact the singular potential cannot be applied to  interaction in a real system at small 
distances, so we introduce a cut-off for r < r o :  V ( r )  = - f l f ( r / ro) /2r i ,  where f(1) = 1, 
f(0) < CO, choosing the point ro  so that Ar0 << 1. The result is that in the internal region 
r <: ro the solution does not depend on the energy. 

In the external region 

X(r)  = r112Ki, ,(h),  r > ro .  (5.1) 

We use the condition that the logarithmic derivative is continuous at r = ro and get 

xK~~(x)/K~,(x) = 5 -f 
where 

x = Ar,, v = [j?-(I+*)2]112; [ = [rX-' d~/dr],,,, 

is determined by the internal solution. At P > P,, = ( 2 + $ ) 2  this equation has an infinite 
number of roots at any [. One can easily see this from the expansion of K i v ( x )  at x -+ 0. 
The discrete spectrum at P -+ PCr is given by the formula 

(5.3) E,! z - r; 'c, exp[ - Ir(n + l ) / v ]  

where c 1  is a constant depending on 5 and I (see also Morse and Feshbach 1953). 
We now obtain the discrete spectrum in the quasiclassical approach. Taking 

account of the Langer term, p ( r )  = A[(rz/r)2 - 1]'12, where r2  = v/i, is the turning point. 
In the region ro < r < r2 the quasiclassical wavefunction is 

X(r)  = p - ' I 2  sin( [p(r)dr+y') 

The phase shift y' is determined from the boundary condition at r = ro : v cot y' = < -f. 
From the Bohr-Sommerfeld quantization condition we have 

y '+y"+ 1: p(r)  dr = (n+ 1)n 

where y" = 744 is a contribution from the turning paint r 2 .  With the notation 
r2/r0 = cosh y we obtain 

P - P c r  E,, = - 
2rg cosh'y 

where y = y,, are positive roots of the equation 

(5.4) 

y - tanh y = [(n + ;)n - cot - q,]/v, = ct;-+,/v. ( 5 . 5 )  
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The difference between the approximate solution and the exact one obtained from 
(5.2) diminishes rapidly with the increase in the coupling f l .  The reason is that the 
inequality necessary for application of the quasiclassical approach 

d(p(r))- ‘/dr = [l - ( r / r 2 ) 2 ] - 3 1 2 / ~  << 1 

is better satisfied if v is larger. A consequence of equation (5.4) at i r ,  + 0 is the asymp- 
totic formula (5.3). Thus one is able to apply the usual quasiclassical method to the 
attractive singular potentials if the potential is cut off at small distances. 

Using this method we consider the problem of critical nuclear charge. The critical 
value of the nuclear charge (Zcr > 137) is the value of Z at which the ground state atomic 
level falls up to the boundary of the lower continuum ( E  = - mc2).  The quantity Z,, 
depends essentially on the nuclear radius rN and on the charge distribution inside the 
nucleus. At Z > Z , ,  the level dives into the lower continuum and continues as a 
resonance, Re E < -mc2 ; the neutral vacuum becomes unstable and an electron- 
positron pair may be created, the electron occupying the level while the positron is 
emitted?. This problem is now receiving considerable attention in view of a possible 
test of quantum electrodynamics in the presence of superstrong Coulomb fields (Pieper 
and Greiner 1969, Popov 1970a, b, 1971, 1973a, Zeldovich and Popov 1971, Mueller 
et a1 1972). The quasiclassical approach for the Coulomb problem with Z < 137 
results exactly in the Sommerfeld fine-structure splitting. Therefore one may hope that 
even at Z > 137 the electron energy terms are described accurately by this approach. 

By means of the substitution ~ ( r )  = rV-’”g(r )  the Dirac equation at  the boundary 
of the lower continuum is transformed to the Schrodinger form x”+ k2X = 0, where 

k z ( r )  = 2V+ V z + ~ V ” / V - ~ V ’ / 1 / ) 2 + r - 1 V ’ / V  

(for the s levels), h = c = m = 1, 5 = Za, m is the electron mass, rN is the nuclear radius. 
Explicit form of the cut-off function f is determined by the charge distribution inside 
the nucleus. The main contribution to  the quantization condition is from the region 
rN < r < r l  where r l  = (i2 - 1)/25 is the turning point (rl  >> rN). In this region 

P - - k2- -1  4* - 2  = r-2([*-l)(l-r/rl), 

X(r) = (rp)-’”sin ( p dr+y’) (5.7) 

(taking into account the Langer term). Determining the phase y’ from the boundary 
condition at the nuclear surface, we have 

y ’+  [: p d r  = (n+$)n. 

t The effect of spontaneous pair creation in a strong electric field is observable in collisions of heavy ions with 
over-critical total charge ( Z ,  + Z ,  > Z,,), when the internuclear distance is less than a critical value Rc, .  For 
instance, in the case of two U nuclei R,, = SO fm, and the corresponding cross sections are rather large (Popov 
1973% Marinov and Popov 1975 and references therein). 
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The critical nuclear charge Z, ,  = 1371 as a function of the nuclear radius rN is obtained 
from the relation 

(’-1 
r N  = 

21 cosh’y 

where y is the root of equation (5.5) where one should put r]  = ((1’ - 1)- ‘ I 2 .  As for the 
constant 4, it is determined by solution of the Dirac equation inside the nucleus and 
does not depend on the energy at rN << 1 (for heavy nuclei rN - 0.02). To calculate 5 
we solve the differential equation for the function U = x / x ’  : 

where p = r / r N ,  u(0) = 0, u(1) = ( - I .  For example, if the charge is distributed on the 
nuclear surface, then f ( p )  = 1 ,  5 = 1 cot c. It is essential to use equation (5.9) because 
inside the nucleus the potential is quite different from the Coulomb form and there is 
no reason to use the quasiclassical method for small n. The function tCr(rN), calculated 
by means of the given formulae for the case of homogeneous charge density (ie 
f ( p )  = (3 -p2 ) /2 ) ,  is given in figure 2. Results of the exact calculation (Popov 1970) and 
of the asymptotic estimate (Popov 1972, equation (6)) are also presented. 

The asymptotic formula for c,, is deduced under the assumption that 

g = ([:,- 1 ) l ”  << 1, 

and the quasiclassical approach is valid at  g >> 1. A high accuracy in both calculations, 
even for the 1s level, is remarkable. It is seen from figure 2 that these two approximations 

1.0- 

G 
0.10 0 

Figure 2. Critical charge i,, = 2,,/137 for the ls,,* electron level as a function of the nuclear 
radius rN. Curve 1 is the exact solution (Popov 1970), curve 2 is obtained from asymptotical 
calculation (Popov 1972) and curve 3 is the quasiclassical result. 
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are found to be valid up to g E 1 and the regions of their applicability overlap. The 
accuracy of the quasiclassical formulae is even better for the excited levels. 

It would be of interest to produce a quasiclassical solution of the two-centre problem, 
obtaining a new estimate for the critical internuclear distance R,, important for calcula- 
tion of spontaneous positron production in heavy ion collisions. Note that the asymp- 
totic formula for R,, was obtained (Popov 1973b) and it was calculated by means of the 
variational method (Marinov et a1 1974). 

Appendix. Multidimensional case 

The obtained results may be easily generalized to the case of a spherical symmetric 
potential in f-dimensional space : V = V(r), r = (x: + . . . + x$”’. The solution of the 
Schrodinger equation is of the form 

$rill = R n L r ) L ( f i ) ,  Ai = x i / r  (A.1) 
where L2 xA = I ( I + f -  2)xA,  I = 0,1, .  . . , and A is a combination of f - 2 indices, 
specifying the f-dimensional spherical function. Introducing ~ ( r )  = r(s-  ‘) / ,R(r) we get 
the one-dimensional Schrodinger equation x” + 2(E - V ) X  = 0 where 

V ( r )  = V ( r ) + L ( L +  1)/2r2, L = 1+(f-3)/2. ( A 3  
Thus substituting 1 by L, one may generalize the results to any dimension f .  In par- 
ticular, in the quantization condition (2.5) one should use the new value of the constant, 

21+f-a y‘ = 
2(2 -U) . 

Note that this condition results in exact energy spectra for the Coulomb and oscillator 
potentials at  any n,  1 and f .  

Consider now briefly the ‘collapse’ infdimensions. For the potential V(r)  = - p/2r2 
the exact solution has the form (5.1) at r > r o ,  where now v = [P-(L+92]1’2 .  At 
Ar0 1 the quantity t does not depend on the energy and may be calculated from the 
equation 

y’ = 1 -[bf(x)-A(A+ l)x-’]y2, 5 = (y(l))-’, y(0)  = 0, x = r / ro  (‘4.4) 
where f ( x )  is the smoothing function. The discrete spectrum arises from the equation 
(5.2) at p > p,, = ( I -  1 +f/2),. Note that for 1 = 0 and f = 2 the ‘collapse’ occurs at 
any positive j (per = 0). This is due to the form of the effective potential in (A.2). In this 
case L = -f and even for a non-singular potential there is an attraction strong enough, 
so that the regular and singular solutions differ only by a logarithm: R I  - constant 
and R ,  - In r at r + 0. Such a situation is typical for the problems with ‘collapse’ 
(Morse and Feshbach 1953). 
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